Using Case Based Heuristics to Speed up Reinforcement Learning

نویسندگان

  • Reinaldo A. C. Bianchi
  • Raquel Ros
  • Ramon Lopez de Mantaras
چکیده

The aim of this work is to combine three successful AI techniques –Reinforcement Learning (RL), Heuristics Search and Case Based Reasoning (CBR)– creating a new algorithm that allows the use of cases in a case base as heuristics to speed up Reinforcement Learning algorithms. This approach, called Case Based Heuristically Accelerated Reinforcement Learning (CB-HARL), builds upon an emerging technique, the Heuristic Accelerated Reinforcement Learning (HARL), in which RL methods are accelerated by making use of heuristic information. Empirical evaluations were conducted in a simulator for the RoboCup Four-Legged Soccer Competition, and the results obtained show that using CB-HARL, the agents learn faster than using either RL or HARL methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Use of Cases as Heuristics to speed up Multiagent Reinforcement Learning

This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Multiagent Reinforcement Learning algorithms, combining Case Based Reasoning (CBR) and Multiagent Reinforcement Learning (MRL) techniques. This approach, called Case Based Heuristically Accelerated Multiagent Reinforcement Learning (CB-HAMRL), builds upon an emerging technique, Heuristic Acce...

متن کامل

Improving Reinforcement Learning by Using Case Based Heuristics

This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Reinforcement Learning algorithms, combining Case Based Reasoning (CBR) and Reinforcement Learning (RL) techniques. This approach, called Case Based Heuristically Accelerated Reinforcement Learning (CB-HARL), builds upon an emerging technique, the Heuristic Accelerated Reinforcement Learning ...

متن کامل

Case-Based Multiagent Reinforcement Learning: Cases as Heuristics for Selection of Actions

This work presents a new approach that allows the use of cases in a case base as heuristics to speed up Multiagent Reinforcement Learning algorithms, combining Case-Based Reasoning (CBR) and Multiagent Reinforcement Learning (MRL) techniques. This approach, called Case-Based Heuristically Accelerated Multiagent Reinforcement Learning (CB-HAMRL), builds upon an emerging technique, Heuristic Acce...

متن کامل

Transferring knowledge as heuristics in reinforcement learning: A case-based approach

The goal of this paper is to propose and analyse a transfer learning meta-algorithm that allows the implementation of distinct methods using heuristics to accelerate a Reinforcement Learning procedure in one domain (the target) that are obtained from another (simpler) domain (the source domain). This meta-algorithm works in three stages: first, it uses a Reinforcement Learning step to learn a t...

متن کامل

Heuristically Accelerated Reinforcement Learning: Theoretical and Experimental Results

Since finding control policies using Reinforcement Learning (RL) can be very time consuming, in recent years several authors have investigated how to speed up RL algorithms by making improved action selections based on heuristics. In this work we present new theoretical results – convergence and a superior limit for value estimation errors – for the class that encompasses all heuristicsbased al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010